
SeMPE: Secure Multi Path Execution Architecture
for Removing Conditional Branch Side Channels

Andrea Mondelli
Dept. of Computer Science

University of Central Florida
mondelli@knights.ucf.edu

Paul Gazzillo
Dept. of Computer Science

University of Central Florida
paul.gazzillo@ucf.edu

Yan Solihin
Dept. of Computer Science

University of Central Florida
yan.solihin@ucf.edu

Abstract—One prevalent source of side channel vulnerabilities is the
secret-dependent behavior of conditional branches (SDBCB). The state-
of-the-art solution relies on Constant-Time Expressions, which require
high programming effort and incur high performance overheads. In
this paper, we propose SeMPE, an architecture support to eliminate
SDBCB without requiring much programming effort while incurring low
performance overheads. When a secret-dependent branch is encountered,
SeMPE fetches, executes, and commits both paths of the branch,
preventing the adversary from inferring secret values from the branching
behavior of the program. SeMPE outperforms code generated by FaCT,
a constant-time expression language, by up to 18×.

Index Terms—side channel, conditional branch, multipath execution,
microarchitecture

I. INTRODUCTION

As more computation is performed in the cloud, secure and private
computation becomes more and more critical. Sharing of hardware
resources in the cloud is crucial to keeping their utilization rate
high, but it opens the way for side channel vulnerabilities where an
application may leak secret data through the usage patterns it exhibits
on the shared hardware. Applications that share a hardware resource
can then observe the resource usage pattern to infer secrets.

Techniques to address side channels have been proposed, in general
using two separate approaches. One approach is to close each type
of side channel. Each architecture component shared by multiple
applications has the potential of leaking information through the use
of the component, e.g. cache, branch predictor, memory controller,
DRAM rows/banks, etc. (Figure 1). Techniques such as partitioning,
randomization, etc. have been proposed for each type [1]–[4]. Since
every shared component potentially leaks information, closing side
channels with this approach requires all components to be protected
simultaneously; thus it is hard to guarantee protection completeness.
An alternative approach is to close the source of side channels. There
are several sources in the code that cause side channel leakage,
including conditional branches and access patterns. The general
solution for closing the source of side channels is to make application
behavior secret-independent. In general, closing the source is more
powerful than closing the types of side channels as it provides broad
based protection. However, efficient mechanisms for closing side
channel source are still elusive. ORAM, for example, is known to
slow down applications by orders of magnitude [5].

In this paper, we take the approach of addressing an important
and prevalent source of side channels, which we refer to as the the
secret-dependent behavior of conditional branches (SDBCB). Code
such as if (secret) {if-path} else {else-path} reveals information to
the attacker through differences in behavior of the two paths of the
conditional branch. For instance, the leak is a timing channel when
two paths differ in execution time, a cache access channel if the paths
differ in cache access counts or occurrences, a memory access pattern
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Fig. 1: Approaches to deal with side channels.

channel if the memory accesses occur to different addresses in the two
paths, and a branch predictor channel when the branch predictor state
captures the past outcomes of the branch. Rather than designing an
architecture to support closing each type of side channel, we propose
an architecture that removes a source of these side channels.

1: for i = n− 1 to 0 do
2: r ← square(r)
3: r ← modulo(r,m)
4: if ei = 1 then
5: r ← multiply(r, b)
6: r ← modulo(r,m)
7: end if
8: end for

Fig. 2: Modular exponentiation in RSA with ei as secret.

To illustrate an example, Figure 2 shows SDBCB leakage for the
modular exponentiation function from RSA public-key cryptography.
The secrets are the bits of the key (e), tested on line 4 (ei = 1).
By observing the difference in behavior of the branch paths (e.g.
difference in execution time), the attacker can infer ei. Protecting
against this attack is challenging: the function has to be rewritten to
eliminate the secret-dependence while preserving the same functional
behavior [6]–[12].

Currently, there are only software approaches to eliminate the
secret-dependent behavior of conditional branches (SDBCB). A pop-
ular technique, used in many cryptographic libraries, is to use Con-
stant Time Expression (CTE). CTE eliminates conditional statements
by manually converting the conditions into arithmetic expressions
used in the branch paths. Memory Trace Obliviousness (MTO) [13]
and GhostRider [14] transform code in order to equalize memory
accesses in both branch paths and obfuscates their addresses using
ORAM [15]–[17]. Raccoon [18] wraps a branch with functions that
ensure both branch paths are executed. Due to reliance on software,
they incur very high performance overheads; two to three orders of
magnitude slowdown have been reported [13], [14], [18].978-1-6654-3274-0/21/$31.00 ©2021 IEEE



To avoid the prohibitively high performance overheads of software
solutions, we introduce Secure Multi-Path Execution (SeMPE), a
microarchitecture to eliminate SDBCB. SeMPE has the following
unique benefits: (1) low programming complexity as only source
annotations are required, (2) low performance overhead, (3) simple
architecture support, and (4) backwards compatibility for binary
compatibility with non-SeMPE architectures. SeMPE introduces ar-
chitectural support for executing both paths of branch instructions
to eliminate the secret-dependent behavior, thereby preventing an
adversary from inferring secret values using any side channels.

Our approach uses new hardware extensions that can be utilized
with minimal compiler support. SeMPE repurposes and builds on
dual-path execution [19]–[21], originally proposed for improving the
performance of hard-to-predict branches by speculatively executing
both paths of a branch. Similarly, SeMPE fetches and executes all
paths of a secret conditional branch. But, unlike prior dual-path
execution architectures, SeMPE ensures that the execution of both
paths is indistinguishable from running either path alone, thereby
preventing a side channel leak of secret values. Achieving this
security property requires major differences in the architectural design
compared to traditional dual-path execution: an indistinguishable
memory access pattern, an execution order independent of the branch
condition, and the commit of all instructions of both paths. SeMPE
introduces a new branching instruction, the Secure Jump (sJMP).
When executed, the sJMP instruction pushes the destination address
into a hardware Last-In-First-Out (LIFO) structure. When all the
subsequent instructions have been committed, the pushed address is
popped and used to set the Next Program Counter (nextPC), automat-
ically executing the other branch of a secret-dependent conditional.

We evaluated the performance of our proposed architecture with
both a set of microbenchmarks, for stress testing and a real-world
software image conversion library (libjpeg [22]) for realistic evalua-
tion. libjpeg contains a side channel vulnerability that leaks visual
details of an image during decompression. Our evaluation shows
that the execution time with SeMPE is near ideal: execution time
increases linearly with the number of secret branch paths, independent
of the size of the workload executed. When compared against CTE
code derived using the state of the art CTE language and compiler
FaCT [23], SeMPE outperforms CTE substantially, by a factor of
1.6− 18×.

II. BACKGROUND AND RELATED WORK

A. Techniques to Remove SDBCB

Several software techniques have been proposed for eliminating the
secret-dependent behavior of conditional branches, including constant
time expressions [23], memory trace obliviousness [13], [14], and
Racoon [18]. Table I compares the three prior approaches with
SeMPE across four categories important for protecting private user
data in the cloud.

Aspects CTE GhostRider Raccoon SeMPE
Approach elim. cond. equalize execute execute

branch path both paths both paths
Technique SW HW/SW SW HW/SW
Prog. complexity High Low Low Low
Overheads Superlinear Superlinear Superlinear Linear
Simple arch Yes No Yes Yes
Back-compatib. Yes No No Yes

TABLE I: Comparing approaches to eliminate SDBCB: constant time
expression (CTE), GhostRider [13], [14], Raccoon [18], and our
SeMPE architecture.

a) Constant Time Expression: CTE works by removing con-
ditional branches by converting branch paths to full arithmetic
operations. Figure 3a shows an example of a nested if-else
statement that operates on secret user data A, B, and C. Figure 3b
shows the resulting CTE transformation. Secrets (A, B, and C) are
converted into binary values (bA, bB, and bC), and each statement
is converted into an expression that includes the logical combination
of the binaries that produces the statement.

1: @secret A,B,C
2: if A ∨B then
3: j ← j + 1
4: else
5: if C then
6: k ← k + 1
7: else
8: k ← k − 1
9: end if

10: end if

(a)

1: @secret A, bA,B, bB,C, bC
2: bA← (bool)A
3: bB ← (bool)B
4: j ← (bA× bB + bA
5: ×(1− bB) + (1− bA)× bB)
6: ×(j+1)+(1− bA)× (1− bB)× j
7: bC ← (bool)C
8: k ← (1−bA)× (1−bB)×bC× (k+1)
9: k ← k + (1− bA)× (1− bB)

10: ×(1− bC)× (k − 1)

(b)

Fig. 3: Examples: (a) code with conditional statements, and (b) its
constant-time version. A, B, and C are secrets.

Constant Time Expression (CTE) is currently the standard practice
technique for eliminating SDBCB in some crypto libraries. However,
it involves a large manual effort, both for code transformation and for
verifying the resulting assembly code is free of conditional branches
(which may be inserted by the compiler [23], [24]). Finally, the com-
plexity of CTE code increases super-linearly with the nesting depth
of conditional branches. For our test case of 11-path nested branches,
CTE incurs 187.3× slowdown vs. only 10.6× with SeMPE.

b) Memory Trace Obliviousness and Racoon: Memory Trace
Obliviousness [13] and the compiler and architecture for it
(GhostRider [14]) transform code in order to balance memory ac-
cesses in both branch paths and obfuscate their addresses using
ORAM. Raccoon [18] executes both branch paths and converts every
load and store to a transaction to ensure that the false branch path does
not affect program state. Both MTO and Raccoon incur huge execu-
tion time slowdowns of up to 1, 987× and 452×, respectively [13],
[18].

Considering that MTO and Raccoon’s overheads are higher than
CTE, and CTE is the standard practice today, we choose CTE to
compare against SeMPE.

B. Multi Path Execution
Dual/Multi Path Execution is a technique proposed to reduce

branch misprediction penalties by executing instructions from all
paths of a conditional branch instruction [19]–[21]. Once the branch
outcome is discovered, the false path instructions are squashed while
the true path instructions are allowed to commit. SeMPE differs from
traditional multipath execution in several ways. First, to eliminate
side channels, the execution of instructions from both branch paths
must be indistiguishable to the observer in SeMPE. That means that
instructions from both paths must commit, instead of having one of
them squashed as in prior multipath techniques. Second, traditional
multi path execution only handles one conditional branch, stalling at
nested conditionals. In contrast, SeMPE handles nested conditional
branches. Finally, traditional multipath’s scope is tiny as it applies
only to instruction window of the processor. In contrast, SeMPE’s
scope is arbitrary and not limited by the instruction window.

III. THREAT MODEL AND ASSUMPTIONS

We assume a cloud computing platform where distinct applications
share hardware. We assume that physical security is strong hence



we do not protect against physical attacks or physical side channels
(such as power usage). The victim and the attacker may be separate
processes in the same or different virtual machines scheduled to
run on the same server. We assume a trusted hypervisor and OS
that enforce address space isolation. We assume the attacker can
measure timing at a coarse granularity, but has no access to hardware
counters that track the victim’s execution characteristics. The attacker
can prime the cache and branch predictor state through its own
execution and can infer the victim’s working set, i.e., addresses
of past reads and writes to memory, through a shared cache. The
attacker knows or can guess the code that the victim is running. We
only focus on SDBCB sources of side channels, as access pattern
source is already dealt with by Oblivious RAM [15]. We note that
SeMPE does not address Spectre/Meltdown-style attacks [25], [26],
because they do not involve leaks due to secret-dependent branch
behavior. Techniques for preventing Spectre/Meltdown are orthogonal
to SeMPE.

We rely on the same input program assumptions used by Rac-
coon [18], i.e. (1) the program does not contain bugs that will
induce application crashes, (2) the program does not exhibit undefined
behavior, and (3) if multi-threaded, the program is data-race free.
Because the proposed architecture executes all paths of a secure
branch, an instruction in a false path may incur an exception, such
as due to operating on an incorrect value (e.g. divide-by-zero). Such
situations are normally acceptable even in a bug-free program, if
the programmer assumes always-taken or always-not taken branch
behavior for a specific secret.

IV. SEMPE DESIGN

A. Foundation of Security

The foundation for security of SeMPE is that executing both paths
of a conditional branch that depends on secret is necessary to hide
the secret. Assume a conditional branch with the following form,
if (secret) P1 else P2 . Suppose that P1 and P2 are exclusive, i.e.
do not share common instructions, and minimal, i.e. removing any
instruction from P1 (or P2) changes the live out values of P1 (P2).
Also suppose that P1 and P2 are bug-free and do not incur any
terminating exceptions. We claim that:

Claim. For the secret to not be inferrable from the execution of P1
or P2, the minimum execution needed is all instructions of P1 plus
all instructions of P2.

To support the claim, consider the cases below. If only one of P1
or P2 is executed, secret is inferrable due to the behavior reflecting
only one of them. If both P1 and P2 are executed entirely, the secret
cannot be inferred as execution behavior no longer depends on the
secret. Now suppose that we execute both P1 and P2 minus one
instruction from P1. Since P1 is minimal, the correctness of P1 is
affected. The important implication of the claim is that the execution
time for the execution of both paths of a secret branch represents the
ideal overheads. If there are N -deep nested conditionals, and each
path incurs T time, the execution time is at least 2N×T when secure.

B. Terminology

In the presence of a control flow, a basic block contains the
instructions of all the possible branch outcomes. All the instructions
in the path of a secret branch are referred to as SecureBlock
(SecBlock). The significance of SecBlock is that all instructions
in SecBlock must be executed. The encapsulating (i.e. outermost)
code starting from the secure branch to the joint point of its paths
is referred to as the secure region. For a secret branch with two
SecBlocks, we refer to the true path as valid block.

T

  A : ST(X)
  B : R1        …

sJMP
   C :  R1        …
  D :  R2        …

   E :  ST(X)

    F :  …         R1
 G :  R2        …

jmp

eosJMP
  H  : …       R2
   I   : LD(X) 

NT

BB1

BB2 BB3

BB4

Fig. 4: Basic Blocks with Phantom Dependencies. Secure branch’s
true path is not taken (NT).

C. Expressing Secure Regions

a) Instruction Set support: To support the SeMPE, the Instruc-
tion Set Architecture (ISA) is extended by adding a new instruction
(eosJMP), and a unique prefix for branch instructions, called Secure
Execution Prefix (SecPrefix). Branch instructions are coded as sJMP
using the SecPrefix. The second modification is the addition of a new
instruction that will be inserted as the first instruction in common
between the two branch paths of the secure jump. The compiler
inserts this instruction and displaces the instruction that used to be
the join point of both branch paths. We refer to the new instruction as
End-of-SecureJump (eosJMP). The instruction works as a backward
jump to return the execution to the branch and take the other branch
path.

D. Challenges to Multi-Path Execution

Multi-path execution introduces challenges in designing the
pipeline. Consider a code example in Figure 4 with four basic blocks
with several instructions in each basic block. Suppose that a secure
branch’s true path is not taken. Note that we have a read after write
(RAW) dependence between instructions B and F (B →RAW F ),
and between G and H (G →RAW H). If BB2 is also executed,
phantom dependences may be introduced. An execution sequence
of BB1, BB2, BB3, and BB4 will introduce the following phantom
dependences: B →WAW C, C →RAW F , and D →WAW G.
Likewise, if the execution sequence is BB1, BB3, BB2, and BB4,
phantom dependences are also introduced. The dependences affect
the correctness of the execution when both paths are executed.
Phantom memory dependences are also possible, e.g, A →MEM I
or E →MEM I .

In SeMPE, a secret branch must execute and commit both branch
paths regardless of the branch predictor. To keep the hardware support
simple, we choose to execute the paths sequentially: a secret branch
is evaluated twice, as true for the first SecBlock and as false for the
second SecBlock.

Phantom dependences are still introduced with sequential execution
of SecBlocks. When a false-path SecBlock is executed, the architec-
ture state such as the rename table and register file will be changed.
Thus, when eosJMP is encountered and the execution needs to go to
the alternate path, the architecture state prior to the SecBlock needs to
be restored. Similarly, the architecture state corresponding to the true
SecBlock must be in place (or restored) prior to exiting the secure
region. Section IV-F discusses our approach to this problem. A similar
phenomenon exists for memory dependences, except that memory
values are not part of the micro-architectural state, so saving and
restoring memory values is out of the scope of SeMPE’s capabilities.
We assume that programs are written or compiled with memory
dependences already disambiguated.

E. SeMPE Microarchitecture

In traditional architectures, when a conditional branch instruction
is encountered, the nextPC is set to either the following instruction
(if the branch is not taken) or the target branch address (if the branch
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is taken). The branch predictor outcome sets the nextPC based on the
predicted outcome.

In SeMPE, sJMP must execute both paths, hence the branch
predictor does not need to generate a prediction. Hence, the nextPC
is always first set to the following instruction address, as if the
branch condition is not true. The not-taken SecBlock is exe-
cuted entirely, while the target address of the sJMP instruction
is calculated. Once the target address is calculated, it will be
saved and used by the eosJMP instruction to set up the nextPC,
which corresponds to the first instruction in the second SecBlock.
Not-taken path is always executed first hence no secret-dependent
behavior can be observed by the attacker, including order of memory
accesses and behavior of prefetcher. (We assume the attacker does not
alter the code at runtime.) The target address is managed in a LIFO
hardware structure, called a Jump-Back Table (jbTable), shown in
Figure 5. The jbTable consists of multiple entries to support nested
secret branches, with each entry containing the nextPC address, the
branch outcome (T/NT), a valid bit (Valid), and a Jump-Back (jb)
bit. When a sJMP is issued (Step 1©), a new entry in the jbTable is
created, with the Valid bit and jb reset. When the sJMP is committed,
the calculated target address is written to the jbTable, and the Valid
bit is set (Step 2©). A sJMP instruction can only be issued if the
prior jbTable entry has its Valid bit set, otherwise it must stall from
issuing. In this way, the jbTable will be faithful to LIFO to ensure
that the the correct Valid bit is set for the correct sJMP.

At the end of the first SecBlock, the eosJMP is executed and
committed (Step 3©). At that time, the most recent jbTable entry
is looked up. If the jb is not set (when the eosJMP is encountered
for the first time), the address field of the most recent entry is copied
to the nextPC (Step 4©), and the jb is set (Step 5©). If, instead, the
jb is already set, this indicates that the second SecBlock of the sJMP
has been executed and the corresponding entry of the jbTable can be
removed. The existing issue queue presents a valid bit for each source
operand, called V1 and V2 [27]. In the simplified issue queue entry
in Figure 5, assuming two source operands, the V1 and V2 bits are
set when the corresponding operand are ready, or ignored when the
operand is not used. In existing microarchitectures, the V2 bit remains
unset for conditional branches and not used. SeMPE sets it when the
Valid bit of the jbTable is set. A nested sJMP can be issued (Step 6©)
only if the jbTable is empty or the last sJMP in the LIFO is executed,
i.e., the Valid bit is set and copied in V2. We don’t need to modify the
existing issue queue. The use of a LIFO structure allows the handling
of a nested sJMP with low hardware complexity, without the need of
more complex random-access structures, and without adding address
comparison logic. When running a SecBlock, we may encounter non-
secret branch instructions. In contrast to sJMP instructions, they will
consult (and update) the branch predictor. The sJMP does not need to

use the branch predictor, because we know in advance we will execute
both path despite the value of the secret. If the pipeline is flushed
due to a branch misprediction, the flushing works as follows. For
each sJMP squashed in the Reorder Buffer (ROB), from the newest
to the oldest, the most recent jbTable entry is deleted. The ROB will
contain, at any time, the sJMP instructions representing SecBlock
whose Program Counter (PC) has not “jumped back” yet, i.e. jb is
still invalid. Since the address contained in the jbTable will be used
as nextPC only when the eosJMP is committed the first time, we can
guarantee the correctness after the pipeline flush.

Since each entry of the table deals with one sJMP instruction in a
secure region, the number of jbTable entries is equal to the maximum
number of nested sJMP the architecture can handle. The total size of
jbTable is small. Each jbTable entry equals to the size of a register
(64 bits) + two bits (jb and Valid bits). Even with 30 entries, jbTable
has less than 256 bytes. We believe a few dozen entries should be
sufficient, because outside of recursion, deeply nested secure branches
are rare. Our investigation reveals that the degree of sJMP nesting on
a cryptographic algorithm is likely much less than a dozen. Dealing
with secret user data may require a higher nesting degree, but unlikely
to be beyond 30 in most situations. Furthermore, the compiler can
reduce the nesting degree by collapsing multiple conditionals into a
single one with a larger expression. For example, if (A) {if (B) ...}
can be converted into if (A and B) {...}. Recursion may be either
rejected at compile time, or made to trigger exception at run time.
It is up to the exception handler whether to stop program execution,
or to continue execution of the branch as non-secure. We note that
such restrictions are also common in CTE.

F. Dealing with Phantom Register Dependences

Phantom register dependences are false register dependences that
occur between both paths of a secure branch. To manage them, we
consider several architecture solutions. The first solution considered
was the Lazy Register Spill (LRS). LRS uses a cache-like rename
table with tags, similar to [28]. The tag identifies the SecBlock, allow-
ing to spill only modified registers. Unfortunately, LRS complicates
the rename table and affects instructions not belonging to SecBlock.
Our goal is to keep hardware changes low without impacting the
performance of the rest of the program. The second technique we
considered was the use of a Physical Register Snapshot (PhyRS)
mechanism to restore the contents of the register file and the Register
Alias Table (RAT) at the end of both paths, depending on the secret.

The implementation needs two snapshots per nested SecBlock,
containing the register file and the Register Alias Table (RAT). The
first snapshot is taken prior to the execution of a SecBlock, right after
the sJMP is committed. The second snapshot is taken at the end of
the execution of the not-taken path, when the eosJMP is committed
for the first time. At the end of the SecBlock, the register file and the
RAT are rebuilt using the correct snapshot, according to the branch
outcome. For saving snapshots, we considered the combination of
scratchpad memory and register spilling. The Scratchpad Memory
(SPM) was used as a temporary buffer to mitigate register spilling
before any nested SecBlock. This solution solves the problem of
false register dependences between paths but introduced an excessive
performance overhead during the memory spilling of the content of
the SPM. In modern architectures, it is common to have hundreds
of physical registers [29]. Saving all physical registers and the
RAT [30] produce too much snapshot spilling to memory, especially
for deeply nested conditional branches. Therefore, we choose a
third design based on Architectural Register Snapshot (ArchRS)
mechanism instead. The main difference is that only architectural
registers are saved in the Scratchpad Memory (SPM), the number



of which is much lower than the physical registers. Assuming N -
nesting level, the nesting level is used as an offset to access the SPM
during saving and restore. Along with the two architectural register
states, one before entering the SecBlock and another after the NT-Path
execution, the SPM contains two bit-vectors. Each vector contains
many bits to the number of architectural registers. The vectors track
the architectural register modified during the two paths, Taken Path
(T-Path) and NotTaken Path (NT-Path), and will be used to restore the
correct content of the architectural register at the end of SecBlock. A
pipeline drain is added at the beginning of SecBlock. All the registers
are saved when the sJMP is committed, and only modified registers
are saved when the first eosJMP is committed. After the NT-Path the
contents of the registers are restored from SPM. After the T-Path, the
content of the architectural registers is updated with the correct value
according to the secret.

At the end of a SecBlock, the register restore phase takes place.
The registers modified in at least one of the two paths are read
from the SPM. Depending on the branch outcome contained in
the corresponding jbTable entry, the register is overwritten with the
correct value.

G. Compiler Support for SeMPE

The benefits of SeMPE depend on correct usage of the ISA’s
two new instructions, SecureJump and End-of-SecureJump. These
instructions mark the beginning and end of secure branches due to
conditional branches on secret values. Such usage can be automated
in the compiler, however, using a combination of information flow
algorithms that track secrets and existing control- and data-flow
analyses available in modern compiler frameworks, e.g., LLVM.
Using SeMPE correctly requires identifying the branches of secret
values. Automatic identification is possible by leveraging existing
work on information flow analysis [31]–[36].

Once the compiler has identified which conditional branches in-
volve secrets, the compiler can identify which basic blocks of the
control-flow graph are the secure blocks. The compiler insert the
secret-dependent branch with an sJMP where it would normally insert
a JMP, and insert a eosJMP at the join point of the branch’s two paths.

V. EVALUATION METHODOLOGY

To evaluate our scheme, we use three sets of workloads: crypto
benchmark (for functional testing), microbenchmarks (for stress
testing), and a real-world application (for performance testing). The
crypto benchmark is an asymmetric encryption algorithm RSA, which
encrypts and decrypts plaintext for a set amount of times with
different keys.

The microbenchmarks are computation kernels with customizable
nested conditional branches that depend on secret, with several
different workloads on the Taken path of the branch. The parameters
of the microbenchmark are (1) the number of iterations of the entire
secure region (I) and (2) the nesting depth and width of each iteration
(W). We vary I and W to produce over 700 combinations; each
combination runs for at least 100 million instructions.

issue (micro-ops) 8 µops
retire 12 µops / cycle
physical registers 256 INT, 256 FP
load/store queue 32+32 entries
cache DL1 32KB, IL1 16KB, L2 256KB, 2w
page size 4MB
SPM size 216KB (up to 30 snapshots supported)
SPM throughput 64 Bytes/cycle R/W

TABLE II: Haswell-like Baseline microarchitecture model.

The real world benchmark is a library djpeg from libjpeg library
that converts JPEG images into one of PPM, GIF, and BMP; each
case varies in behavior. The secrets for this benchmark are matrices
that represent the color and intensity of image pixels.

We compare SeMPE against CTE written using the state of the
art domain-specific language Flexible Constant-Time Programming
Language (FaCT) [23], [24] and its compiler. The benchmark were
compiled with clang/llvm on GNU/Linux, with secret-dependent code
into its own compilation unit and manually checked against side
channel inadvertantly reintroduced at compile time. FaCT was not
used for djpeg due to many limitations of the language and compiler
(e.g. no floating point support, etc.).

We use gem5 simulator [37] modelling the baseline as an out-
of-order processor configured similar to the Intel Haswell [38]
microarchitecture. The baseline differs from recent microarchitectures
in terms of the cache size, to adjust for the benchmarks’ smaller
working set. The major differences with Haswell are reported in
Table II.

VI. EVALUATION RESULTS

a) Real-World Application Results: Figure 6 depicts the per-
formance of djpeg of SeMPE over the baseline architecture with
no security protection, for three output formats and input file sizes.
The overheads vary between 31% and 87% across image output
formats, but not much across image sizes. Across the three image
types, the number and type of instructions differ and the number
of decode steps for each file type also differ, hence they produce
different performance overheads. The overheads are quite reasonable
considering the large amount of secrets being protected, i.e. large
image data.

20%

40%

60%

80%

PPM GIF BMP
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Fig. 6: Execution time overhead for libjpeg with different image
output format, varying input size.

b) Crypto and Microbenchmarks Results: Figure 7a shows the
slowdown factor (in log scale) of SeMPE (solid lines) and CTE
(dashed lines) versus non-secure baseline, as the nesting depth W
increases along the x-axis. SeMPE executes both paths of a secret-
dependent branch, hence we expect that the execution time with
SeMPE will be roughly linearly proportional to the number of branch
paths executed. The figure mostly confirms it: SeMPE slows down the
benchmarks by 8.4− 10.6× when W = 10 (11 branch paths). CTE,
on the other hand, slows down the execution between 12.9− 187.3×,
as it executes all branch paths plus unrolling all the expressions that
were part of the conditional statements (Figure 3b).

Figure 7b compares the slowdown (geometric mean across bench-
marks), against theoretical ideal in which the execution time is equal
to the number of branch paths (ideal). The figure shows that CTE is
usually over 5× slower vs. ideal. Surprisingly, SeMPE outperforms
ideal when the nesting level is deep. This can be attributed to the
prefetching effect, where both paths of a branch may have overlapped
working set. Executing one path warms up the cache for the alternate
path, accelerating the alternate path when it executes.



Fig. 7: Execution time overheads affected by the nesting depth W (X-
axis): (a) SeMPE slowdown (solid line) vs. the slowdown due to CTE
using FaCT (dashed line), and (b) Average slowdown normalized to
ideal case.

VII. CONCLUSION

We introduced SeMPE, an architecture support for eliminating
secret-dependent conditional branch behavior source of side chan-
nels. SeMPE executes both paths of a conditional branch, making
the branch behavior secret-independent. SeMPE achieves near-ideal
performance overheads without requiring high programming effort. It
allows programmers to annotate secret branches in their program, and
the architecture executes both paths automatically. SeMPE requires
secret branches to be tracked using a hardware table that is small
and simple (e.g. using LIFO instead of random access structure), and
a small scratchpad memory to avoid the false register dependences
that occur between both paths of a secure branch. When compared
against CTE code derived using the state of the art CTE language
and compiler (FaCT), SeMPE outperforms CTE substantially, by a
factor of 1.6− 18×.
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